Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 338
Filtrar
1.
Nat Commun ; 15(1): 3977, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730234

RESUMO

Potent and selective inhibition of the structurally homologous proteases of coagulation poses challenges for drug development. Hematophagous organisms frequently accomplish this by fashioning peptide inhibitors combining exosite and active site binding motifs. Inspired by this biological strategy, we create several EXACT inhibitors targeting thrombin and factor Xa de novo by linking EXosite-binding aptamers with small molecule ACTive site inhibitors. The aptamer component within the EXACT inhibitor (1) synergizes with and enhances the potency of small-molecule active site inhibitors by many hundred-fold (2) can redirect an active site inhibitor's selectivity towards a different protease, and (3) enable efficient reversal of inhibition by an antidote that disrupts bivalent binding. One EXACT inhibitor, HD22-7A-DAB, demonstrates extraordinary anticoagulation activity, exhibiting great potential as a potent, rapid onset anticoagulant to support cardiovascular surgeries. Using this generalizable molecular engineering strategy, selective, potent, and rapidly reversible EXACT inhibitors can be created against many enzymes through simple oligonucleotide conjugation for numerous research and therapeutic applications.


Assuntos
Aptâmeros de Nucleotídeos , Domínio Catalítico , Hirudinas , Trombina , Humanos , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/farmacologia , Trombina/antagonistas & inibidores , Trombina/metabolismo , Trombina/química , Hirudinas/química , Hirudinas/farmacologia , Anticoagulantes/farmacologia , Anticoagulantes/química , Fator Xa/metabolismo , Fator Xa/química , Inibidores do Fator Xa/química , Inibidores do Fator Xa/farmacologia , Animais , Sítios de Ligação , Coagulação Sanguínea/efeitos dos fármacos
2.
Chembiochem ; 25(3): e202300744, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38055188

RESUMO

Hirudins, natural sulfo(glyco)proteins, are clinical anticoagulants that directly inhibit thrombin, a key coagulation factor. Their potent thrombin inhibition primarily results from antagonistic interactions with both the catalytic and non-catalytic sites of thrombin. Hirudins often feature sulfate moieties on Tyr residues in their anionic C-terminus region, enabling strong interactions with thrombin exosite-I and effectively blocking its engagement with fibrinogen. Although sulfotyrosines have been identified in various hirudin variants, the precise relationship between sulfotyrosine and the number of negatively charged amino acids within the anionic-rich C-terminus peptide domain for the binding of thrombin has remained elusive. By using Fmoc-SPPS, hirudin dodecapeptides homologous to the C-terminus of hirudin variants from various leech species were successfully synthesized, and the effect of sulfotyrosine and the number of negatively charged amino acids on hirudin-thrombin interactions was investigated. Our findings did not reveal any synergistic effect between an increasing number of sulfotyrosines or negatively charged amino acids and their inhibitory activity on thrombin or fibrinolysis in the assays, despite a higher binding level toward thrombin in the sulfated dodecapeptide Hnip_Hirudin was observed in SPR analysis.


Assuntos
Hirudinas , Trombina , Tirosina/análogos & derivados , Hirudinas/farmacologia , Hirudinas/química , Hirudinas/metabolismo , Aminoácidos , Peptídeos/farmacologia , Sítios de Ligação
3.
Protein Sci ; 32(12): e4825, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924304

RESUMO

Hirudin from Hirudo medicinalis is a bivalent α-Thrombin (αT) inhibitor, targeting the enzyme active site and exosite-I, and is currently used in anticoagulant therapy along with its simplified analogue hirulog. Haemadin, a small protein (57 amino acids) isolated from the land-living leech Haemadipsa sylvestris, selectively inhibits αT with a potency identical to that of recombinant hirudin (KI = 0.2 pM), with which it shares a common disulfide topology and overall fold. At variance with hirudin, haemadin targets exosite-II and therefore (besides the free protease) it also blocks thrombomodulin-bound αT without inhibiting the active intermediate meizothrombin, thus offering potential advantages over hirudin. Here, we produced in reasonably high yields and pharmaceutical purity (>98%) wild-type haemadin and the oxidation resistant Met5 → nor-Leucine analogue, both inhibiting αT with a KI of 0.2 pM. Thereafter, we used site-directed mutagenesis, spectroscopic, ligand-displacement, and Hydrogen/Deuterium Exchange-Mass Spectrometry techniques to map the αT regions relevant for the interaction with full-length haemadin and with the synthetic N- and C-terminal peptides Haem(1-10) and Haem(45-57). Haem(1-10) competitively binds to/inhibits αT active site (KI = 1.9 µM) and its potency was enhanced by 10-fold after Phe3 → ß-Naphthylalanine exchange. Conversely to full-length haemadin, haem(45-57) displays intrinsic affinity for exosite-I (KD = 1.6 µM). Hence, we synthesized a peptide in which the sequences 1-9 and 45-57 were joined together through a 3-Glycine spacer to yield haemanorm, a highly potent (KI = 0.8 nM) inhibitor targeting αT active site and exosite-I. Haemanorm can be regarded as a novel class of hirulog-like αT inhibitors with potential pharmacological applications.


Assuntos
Hirudinas , Trombina , Hirudinas/genética , Hirudinas/farmacologia , Hirudinas/química , Trombina/química , Trombina/metabolismo , Sequência de Aminoácidos , Peptídeos , Heme
4.
Acc Chem Res ; 56(19): 2688-2699, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37708351

RESUMO

Tyrosine sulfation is a post-translational modification (PTM) that modulates function by mediating key protein-protein interactions. One of the early proteins shown to possess this PTM was hirudin, produced in the salivary glands of the medicinal leech Hirudo medicinalis, whereby tyrosine sulfation led to a ∼10-fold improvement in α-thrombin inhibitory activity. Outside of this pioneering discovery, the involvement of tyrosine sulfation in modulating the activity of salivary proteins from other hematophagous organisms was unknown. We hypothesized that the intrinsic instability of the tyrosine sulfate functionality, particularly under the acidic conditions used to isolate and analyze peptides and proteins, has led to poor detection during the isolation and/or expression of these molecules.Herein, we summarize our efforts to interrogate the functional role of tyrosine sulfation in the thrombin inhibitory and anticoagulant activity of salivary peptides and proteins from a range of different blood feeding organisms, including leeches, ticks, mosquitoes, and flies. Specifically, we have harnessed synthetic chemistry to efficiently generate homogeneously sulfated peptides and proteins for detailed structure-function studies both in vitro and in vivo.Our studies began with the leech protein hirudin P6 (from Hirudinaria manillensis), which is both sulfated on tyrosine and O-glycosylated at a nearby threonine residue. Synthetically, this was achieved through solid-phase peptide synthesis (SPPS) with a late-stage on-resin sulfation, followed by native chemical ligation and a folding step to generate six differentially modified variants of hirudin P6 to assess the functional interplay between O-glycosylation and tyrosine sulfation. A one-pot, kinetically controlled ligation of three peptide fragments was used to assemble homogeneously sulfoforms of madanin-1 and chimadanin from the tick Haemaphysalis longicornis. Dual tyrosine sulfation at two distinct sites was shown to increase the thrombin inhibitory activity by up to 3 orders of magnitude through a novel interaction with exosite II of thrombin. The diselenide-selenoester ligation developed by our lab provided us with a means to rapidly assemble a library of different sulfated tick anticoagulant proteins: the andersonins, hyalomins, madanin-like proteins, and hemeathrins, thus enabling the generation of key structure-activity data on this family of proteins. We have also confirmed the presence of tyrosine sulfation in the anticoagulant proteins of Anopheles mosquitoes (anophelins) and the Tsetse fly (TTI) via insect expression and mass spectrometric analysis. These molecules were subsequently synthesized and assessed for thrombin inhibitory and anticoagulant activity. Activity was significantly improved by the addition of tyrosine sulfate modifications and led to molecules with potent antithrombotic activity in an in vivo murine thrombosis model.The Account concludes with our most recent work on the design of trivalent hybrids that tandemly occupy the active site and both exosites (I and II) of α-thrombin, with a TTI-anophelin hybrid (Ki = 20 fM against α-thrombin) being one of the most potent protease inhibitors and anticoagulants ever generated. Taken together, this Account highlights the importance of the tyrosine sulfate post-translational modification within salivary proteins from blood feeding organisms for enhancing anticoagulant activity. This work lays the foundation for exploiting native or engineered variants as therapeutic leads for thrombotic disorders in the future.


Assuntos
Anticoagulantes , Trombina , Animais , Camundongos , Anticoagulantes/farmacologia , Sequência de Aminoácidos , Trombina/metabolismo , Hirudinas/farmacologia , Hirudinas/química , Hirudinas/metabolismo , Tirosina/química , Proteínas e Peptídeos Salivares
5.
Sci Rep ; 13(1): 4943, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973525

RESUMO

Hirudin is a pharmacologically active substance in leeches with potent blood anticoagulation properties. Although recombinant hirudin production isolated from Hirudo medicinalis Linnaeus and Hirudinaria manillensis Lesson is known, to our knowledge, this study is the first to report recombinant hirudin expression and production from Hirudo nipponia Whitman. Thus, the present study aimed to clone and characterize the full-length cDNA of a candidate hirudin gene (c16237_g1), which is localized on the salivary gland transcriptome of H. nipponia, and further evaluate its recombinant production using a eukaryotic expression system. The 489-bp cDNA possessed several properties of the hirudin "core" motifs associated with binding to the thrombin catalytic pocket. A fusion expression vector (pPIC9K-hirudin) was constructed and successfully transformed into Pichia pastoris strain GS115 via electroporation. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis and western blot analysis confirmed hirudin expression. The recombinant protein was expressed with a yield of 6.68 mg/L culture. Mass spectrometry analysis further confirmed target protein expression. The concentration and antithrombin activity of purified hirudin were 1.67 mg/mL and 14,000 ATU/mL, respectively. These findings provide a basis for further elucidating the molecular anticoagulation mechanism of hirudin, and address China's growing market demand for engineered H. nipponia-derived hirudin and hirudin-based drugs.


Assuntos
Hirudinas , Sanguessugas , Animais , Hirudinas/genética , Hirudinas/farmacologia , Hirudinas/química , Sequência de Aminoácidos , DNA Complementar , Transcriptoma , Sanguessugas/genética , Sanguessugas/metabolismo , Anticoagulantes , Proteínas Recombinantes/metabolismo , Clonagem Molecular
6.
Biomater Adv ; 135: 212741, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35929214

RESUMO

Surface functionalization to improve the blood compatibility is pivotal for the application of biomaterials. In this article, the surface of silicon was first functionalized with chemical groups, such as amino, quinone and phenol groups by the self-polymerization of dopamine, which were used to immobilize anticoagulant drugs hirudin. The detailed analysis and discussion about the grafting groups, morphology, wettability, the dynamic adsorption of proteins, the cytological property and the blood compatibility on the surfaces were carried on by the technology of contact angle, X-ray photoelectron spectroscopy, quartz crystal microbalance, endothelial cells culture and anticoagulant blood test in vivo. The surface with hirudin modification exhibited hydrophilic property and significantly inhibited the nonspecific adsorption of albumin, while it was more approachable to fibronectin. In vitro study displayed that the surface loaded with hirudin could promote the proliferation of endothelial cells. The evaluation of anticoagulant showed good anti-adhesion effect on platelets and the hemolysis rate decreased significantly to less than 0.4%. Activated partial thromboplastin time (APTT) of the silicon wafer loaded with hirudin can exceed 38 s, and the APTT prolongs as the hirudin concentration rises. This study suggested that such simple but effective surface functionalization technique, combining excellent anticoagulant activity together with reendothelialization potential due to the preferable fibronectin adsorption, provide great practical significance to the application of cardiovascular materials.


Assuntos
Fibronectinas , Hirudinas , Adsorção , Anticoagulantes/farmacologia , Células Endoteliais , Fibronectinas/farmacologia , Hirudinas/química , Silício/química
7.
Br J Pharmacol ; 179(14): 3740-3753, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35135035

RESUMO

BACKGROUND AND PURPOSE: Hirudin variants are the most powerful thrombin inhibitors discovered to date, with a lower risk of bleeding than heparin. For anticoagulation, the C-termini of hirudin variants bind to the exocite I of thrombin. Anticoagulant effects of gene-recombinant hirudin are weaker than natural hirudin for the reason of lacking tyrosine O-sulfation at C-terminus. EXPERIMENTAL APPROACH: An integrative pharmacological study was carried out using molecular dynamic, molecular biological and in vivo and in vitro experiments to elucidate the anticoagulant effects of protein-engineered hirudins. KEY RESULTS: Molecular dynamic analysis showed that modifications of the C-termini of hirudin variant 1 of Hirudo medicinalis (HV1) and hirudin variant 2 of Hirudinaria manillensis (HM2) changed the binding energy of the C-termini to human thrombin. The study indicated that Asp61 of HM2 that corresponds to sulfated Tyr63 of HV1 is critical for inhibiting thrombin activities. Further, the anticoagulant effects of HV1 and HM2 were improved when the amino acid residues adjacent to Asp61 were mutated to Asp. These improvements were prolongation of the activated partial thromboplastin time, prothrombin time and thrombin time of human blood, and decreased Ki and IC50 values. In the in vivo experiments, mutations at C-termini of HV1 and HM2 significantly changed partial thromboplastin time, prothrombin and thrombin time CONCLUSION AND IMPLICATIONS: The study indicated that the anticoagulant effects of gene-engineered HM2 are stronger than gene-engineered HV1 and HM2-E60D-I62D has the strongest effects and could be an antithrombotic with better therapeutic effects.


Assuntos
Hirudinas , Hirudo medicinalis , Sequência de Aminoácidos , Animais , Anticoagulantes/farmacologia , Hirudinas/química , Hirudinas/farmacologia , Hirudo medicinalis/química , Humanos , Simulação de Dinâmica Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Trombina
8.
Biochem Soc Trans ; 50(1): 387-401, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-34994377

RESUMO

Tyrosine-O-sulfation is a common post-translational modification (PTM) of proteins following the cellular secretory pathway. First described in human fibrinogen, tyrosine-O-sulfation has long been associated with the modulation of protein-protein interactions in several physiological processes. A number of relevant interactions for hemostasis are largely dictated by this PTM, many of which involving the serine proteinase thrombin (FIIa), a central player in the blood-clotting cascade. Tyrosine sulfation is not limited to endogenous FIIa ligands and has also been found in hirudin, a well-known and potent thrombin inhibitor from the medicinal leech, Hirudo medicinalis. The discovery of hirudin led to successful clinical application of analogs of leech-inspired molecules, but also unveiled several other natural thrombin-directed anticoagulant molecules, many of which undergo tyrosine-O-sulfation. The presence of this PTM has been shown to enhance the anticoagulant properties of these peptides from a range of blood-feeding organisms, including ticks, mosquitos and flies. Interestingly, some of these molecules display mechanisms of action that mimic those of thrombin's bona fide substrates.


Assuntos
Hirudinas , Trombina , Sequência de Aminoácidos , Animais , Anticoagulantes , Hirudinas/química , Hirudinas/metabolismo , Hirudinas/farmacologia , Trombina/metabolismo , Tirosina/metabolismo
9.
J Mater Chem B ; 9(36): 7409-7422, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34551061

RESUMO

Cardiovascular disease (CVD) poses serious health concerns worldwide. The lack of transplantable vascular grafts is an unmet clinical need in the surgical treatment of CVD. Although expanded polytetrafluoroethylene (ePTFE) vascular grafts have been used in clinical practice, a low long-term patency rate in small-diameter transplantation application is still the biggest challenge. Thus, surface modification of ePTFE is sought after. In this study, polydopamine (PDA) was used to improve the hydrophilia and provide immobilization sites in ePTFE. Bivalirudin (BVLD), a direct thrombin inhibitor, was used to enhance the anti-thrombotic activity of ePTFE. The peptides derived from extracellular matrix proteins were used to elevate the bioactivity of ePTFE. The morphology, chemical composition, peptide modified strength, wettability, and hemocompatibility of modified ePTFE vascular grafts were investigated. Then, an endothelial cell proliferation assay was used to evaluate the best co-modification strategy of the ePTFE vascular graft in vitro. Since a large animal could relatively better mimic human physiology, we chose a porcine carotid artery replacement model in the current study. The results showed that the BVLD/REDV co-modified ePTFE vascular grafts had a satisfactory patency rate (66.7%) and a higher endothelial cell coverage ratio (70%) at 12 weeks after implantation. This may offer an opportunity to produce a multi-biofunctional ePTFE vascular graft, thereby yielding a potent product to meet the clinical needs.


Assuntos
Prótese Vascular , Materiais Revestidos Biocompatíveis/química , Politetrafluoretileno/química , Animais , Antitrombinas/química , Antitrombinas/uso terapêutico , Artérias Carótidas/patologia , Artérias Carótidas/cirurgia , Lesões das Artérias Carótidas/terapia , Proliferação de Células/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/uso terapêutico , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Hirudinas/química , Indóis/química , Masculino , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/uso terapêutico , Polímeros/química , Proteínas Recombinantes/química , Proteínas Recombinantes/uso terapêutico , Suínos , Porco Miniatura , Trombose/tratamento farmacológico , Molhabilidade
10.
Parasitol Res ; 119(6): 1767-1775, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32363441

RESUMO

The hirudin-like factors 3 (HLF3) and 4 (HLF4) belong to a new class of leech-derived factors and are present in specimens of the three European medicinal leeches, Hirudo medicinalis, Hirudo verbana, and Hirudo orientalis, respectively. Here we describe the functional analysis of natural and synthetic variants of HLF3 and HLF4. Whereas the natural variants display only very low or no detectable anti-coagulatory activities, modifications within the N-termini in combination with an exchange of the central globular domain have the potency to greatly enhance the inhibitory effects of respective HLF3 and HLF4 variants on blood coagulation. Our results support previous observations on the crucial importance of all parts (both the N- and C-termini as well as the central globular domains) of hirudin and HLF molecules for thrombin inhibition.


Assuntos
Hirudinas/metabolismo , Sanguessugas/química , Sequência de Aminoácidos , Animais , Coagulação Sanguínea , Hirudinas/química , Hirudinas/genética , Hirudo medicinalis/química , Hirudo medicinalis/genética , Sanguessugas/classificação , Sanguessugas/genética , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Trombina/antagonistas & inibidores
11.
Methods Mol Biol ; 2118: 111-120, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32152974

RESUMO

Thrombin, a major protein involved in the clotting cascade by the conversion of inactive fibrinogen to fibrin, plays a crucial role in the development of thrombosis. Antithrombin nanoparticles enable site-specific anticoagulation without increasing bleeding risk. Here we outline the process of making and the characterization of bivalirudin and D-phenylalanyl-L-prolyl-L-arginyl-chloromethyl ketone (PPACK) nanoparticles. Additionally, the characterization of these nanoparticles, including particle size, zeta potential, and quantification of PPACK/bivalirudin loading, is also described.


Assuntos
Clorometilcetonas de Aminoácidos/síntese química , Antitrombinas/síntese química , Fluorocarbonos/química , Hirudinas/síntese química , Fragmentos de Peptídeos/síntese química , Clorometilcetonas de Aminoácidos/química , Clorometilcetonas de Aminoácidos/farmacologia , Antitrombinas/química , Antitrombinas/farmacologia , Hirudinas/química , Hirudinas/farmacologia , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas , Tamanho da Partícula , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Poli-Hidroxietil Metacrilato , Proteínas Recombinantes/síntese química , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia
12.
FEBS Lett ; 594(5): 841-850, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31733150

RESUMO

The hirudin-like factor 1 (HLF1) of Hirudo medicinalis belongs to a new class of leech-derived factors. In previous investigations, HLF1 did not exhibit anticoagulatory activities. Here, we describe the analysis of natural and synthetic variants of HLF1 and HLF-Hyb, a yet uncharacterized member of the HLF family. Modifications within the N terminus of HLF1 have a strong impact on its activity. Some variants of HLF1 exhibit thrombin-inhibiting activity comparable to hirudins, whereas others have reduced or no activity. The analyses of HLF-Hyb variants revealed a strong impact of the central globular domain on activity. Our results indicate a comparable mode of action of hirudins and thrombin-inhibiting HLF variants. Finally, we propose and discuss criteria for classifying hirudins and HLFs.


Assuntos
Hirudinas/química , Hirudinas/metabolismo , Sanguessugas/metabolismo , Animais , Hirudinas/genética , Humanos , Sanguessugas/química , Sanguessugas/genética , Mutagênese Sítio-Dirigida , Domínios Proteicos , Engenharia de Proteínas , Saliva/metabolismo , Trombina/metabolismo
13.
J Parasitol ; 105(3): 423-431, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31163003

RESUMO

Blood-sucking leeches, some of which are referred to as medicinal leeches, have caught attention not only because of their medical purposes, but also as study organisms to conduct research within fields as diverse as neurobiology, osmoregulation, ecology, and phylogeny. Of particular interest is the question whether hemophagy in leeches is of single origin or evolved independently several times. A key component in the saliva of hematophagous leeches is hirudin, a strong natural inhibitor of thrombin and hence the blood coagulation cascade. Multiple isoforms of hirudin have been described within and among several leech species and genera, often based on sequence data only. The identification of hirudin-like factors (HLFs) illustrated the necessity to underpin such predictions by functional tests. We overexpressed and purified the hirudin of the North American medicinal leech, Macrobdella decora, and proved its thrombin-inhibiting activity. In addition, analysis of the gene structure of both hirudin and some of the decorsins of M. decora clearly indicated conserved exon and intron positions when compared to genes of hirudins and HLFs of Eurasian medicinal leeches. Our data provide evidence for the incorporation of decorsins into the hirudin superfamily and support the concept of a single origin of blood feeding in jawed leeches.


Assuntos
Moléculas de Adesão Celular/genética , Hirudinas/genética , Sanguessugas/química , Sequência de Aminoácidos , Animais , Ásia , Testes de Coagulação Sanguínea , Moléculas de Adesão Celular/química , DNA Complementar/química , Europa (Continente) , Éxons , Técnicas de Genotipagem , Hirudinas/biossíntese , Hirudinas/química , Hirudinas/isolamento & purificação , Íntrons , Sanguessugas/classificação , Sanguessugas/genética , América do Norte , Filogenia , Glândulas Salivares/metabolismo , Alinhamento de Sequência
14.
J Biosci ; 43(5): 921-929, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30541952

RESUMO

5rolGLP-HV is a promising dual-function peptide for the treatment of diabetes and thrombosis simultaneously. For investigating the therapeutic mechanism of 5rolGLP-HV for type 2 diabetes mellitus (T2DM), STZ-induced diabetic mice were established and treated with 5rolGLP-HV. The results showed that daily water and food intake, blood glucose, serum and pancreatic insulin levels significantly decreased after 5rolGLP-HV treatment with various oral concentrations, and 16 mg/kg was the optimal dose for controlling diabetes. 5rolGLP-HV treatment decreased the MDA levels and the T-SOD activity in serum and pancreatic of diabetic mice (but not up to significant difference), and significantly increased the expression of signal pathways related genes of rolGLP-1, also the density of insulin expression and the numbers of apoptosis cells in islets of diabetic mice were significantly decreased in comparison to the negative diabetic mice. These effects above may be clarified the hypoglycemic mechanisms of 5rolGLP-HV, and 5rolGLP-HV may be as a potential drug for diabetes in future.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Hipoglicemiantes/farmacologia , Insulina/sangue , Proteínas Recombinantes/farmacologia , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Ingestão de Líquidos/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Ingestão de Alimentos/efeitos dos fármacos , Regulação da Expressão Gênica , Peptídeo 1 Semelhante ao Glucagon/biossíntese , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Hirudinas/química , Hipoglicemiantes/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Masculino , Malondialdeído/antagonistas & inibidores , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Recombinantes/biossíntese , Estreptozocina , Superóxido Dismutase/metabolismo
15.
Anal Chem ; 90(16): 9682-9686, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30063332

RESUMO

Tandem mass spectrometry (MS/MS) is the primary method for discovering, identifying, and localizing post-translational modifications (PTMs) in proteins. However, conventional positive ion mode collision induced dissociation (CID)-based MS/MS often fails to yield site-specific information for labile and acidic modifications due to low ionization efficiency in positive ion mode and/or preferential PTM loss. While a number of alternative methods have been developed to address this issue, most require specialized instrumentation or indirect detection. In this work, we present an amine-reactive TEMPO-based free radical initiated peptide sequencing (FRIPS) approach for negative ion mode analysis of phosphorylated and sulfated peptides. FRIPS-based fragmentation generates sequence informative ions for both phosphorylated and sulfated peptides with no significant PTM loss. Furthermore, FRIPS is compared to positive ion mode CID, electron transfer dissociation (ETD), as well as negative ion mode electron capture dissociation (niECD) and CID, both in terms of sequence coverage and fragmentation efficiency for phospho- and sulfo-peptides. Because FRIPS-based fragmentation has no particular instrumentation requirements and shows limited PTM loss, we propose this approach as a promising alternative to current techniques for analysis of labile and acidic PTMs.


Assuntos
Radicais Livres/química , Oligopeptídeos/análise , Fosfopeptídeos/análise , Colecistocinina/análise , Colecistocinina/química , Hirudinas/análise , Hirudinas/química , Oligopeptídeos/química , Fosfopeptídeos/química , Fosforilação , Processamento de Proteína Pós-Traducional , Análise de Sequência de Proteína , Espectrometria de Massas em Tandem/métodos
16.
Biotechnol Appl Biochem ; 65(1): 69-80, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29230873

RESUMO

The advent of recombinant DNA technology allowed to site-specifically insert, delete, or mutate almost any amino acid in a given protein, significantly improving our knowledge of protein structure, stability, and function. Nevertheless, a quantitative description of the physical and chemical basis that makes a polypeptide chain to efficiently fold into a stable and functionally active conformation is still elusive. This mainly originates from the fact that nature combined, in a yet unknown manner, different properties (i.e., hydrophobicity, conformational propensity, polarizability, and hydrogen bonding capability) into the 20 standard natural amino acids, thus making difficult, if not impossible, to univocally relate the change in protein stability or function to the alteration of physicochemical properties caused by amino acid exchange(s). In this view, incorporation of noncoded amino acids with tailored side chains, allowing to finely tune the structure at a protein site, would facilitate to dissect the effects of a given mutation in terms of one or a few physicochemical properties, thus much expanding the scope of physical organic chemistry in the study of proteins. In this review, relevant applications from our laboratory will be presented on the use of noncoded amino acids in structure-activity relationships studies of hirudin binding to thrombin.


Assuntos
Aminoácidos/química , Hirudinas/química , Engenharia de Proteínas , Trombina/química , Aminoácidos/metabolismo , Hirudinas/metabolismo , Modelos Moleculares , Estrutura Molecular , Eletricidade Estática , Relação Estrutura-Atividade , Trombina/metabolismo
17.
Molecules ; 23(1)2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29267243

RESUMO

The preclinical safety assessment of novel nanotechnology-based drug products frequently relies on in vitro assays, especially during the early stages of product development, due to the limited quantities of nanomaterials available for such studies. The majority of immunological tests require donor blood. To enable such tests one has to prevent the blood from coagulating, which is usually achieved by the addition of an anticoagulant into blood collection tubes. Heparin, ethylene diamine tetraacetic acid (EDTA), and citrate are the most commonly used anticoagulants. Novel anticoagulants such as hirudin are also available but are not broadly used. Despite the notion that certain anticoagulants may influence assay performance, a systematic comparison between traditional and novel anticoagulants in the in vitro assays intended for immunological characterization of nanotechnology-based formulations is currently not available. We compared hirudin-anticoagulated blood with its traditional counterparts in the standardized immunological assay cascade, and found that the type of anticoagulant did not influence the performance of the hemolysis assay. However, hirudin was more optimal for the complement activation and leukocyte proliferation assays, while traditional anticoagulants citrate and heparin were more appropriate for the coagulation and cytokine secretion assays. The results also suggest that traditional immunological controls such as lipopolysaccharide (LPS ) are not reliable for understanding the role of anticoagulant in the assay performance. We observed differences in the test results between hirudin and traditional anticoagulant-prepared blood for nanomaterials at the time when no such effects were seen with traditional controls. It is, therefore, important to recognize the advantages and limitations of each anticoagulant and consider individual nanoparticles on a case-by-case basis.


Assuntos
Anticoagulantes/química , Lipossomos/química , Nanopartículas/química , Coagulação Sanguínea , Proliferação de Células , Ácido Cítrico/química , Ativação do Complemento/efeitos dos fármacos , Citocinas/metabolismo , Composição de Medicamentos , Ácido Edético/química , Heparina/química , Hirudinas/química , Humanos , Leucócitos/citologia , Tamanho da Partícula , Agregação Plaquetária , Propriedades de Superfície
18.
Nano Lett ; 17(12): 7447-7454, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29172544

RESUMO

Oligopeptide hydrogels for localized protein delivery have considerable potential to reduce systemic side effects but maximize therapeutic efficacy. Although enzyme catalysis to induce formation of oligopeptide hydrogels has the merits of unique regio- and enantioselectivity and mild reaction conditions, it may cause the impairment of function and activity of the encapsulated proteins by proteolytic degradation during gelation. Here we report a novel enzyme-catalysis strategy for self-assembly of oligopeptide hydrogels using an engineered protease nanocapsule with tunable substrate selectivity. The protease-encapsulated nanocapsule shielded the degradation activity of protease on the laden proteins due to the steric hindrance by the polymeric shell weaved around the protease, whereas the small-molecular precursors were easier to penetrate across the polymeric network and access the catalytic pocket of the protease to convert to the gelators for self-assembling hydrogel. The resulting oligopeptide hydrogels supported a favorable loading capacity without inactivation of both an antiangiogenic protein, hirudin and an apoptosis-inducing cytokine, TRAIL as model proteins. The hirudin and TRAIL coloaded oligopeptide hydrogel for combination cancer treatment showed enhanced synergistic antitumor effects both in vitro and in vivo.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Oligopeptídeos/química , Peptídeo Hidrolases/química , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/química , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/química , Cápsulas , Catálise , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocinas/administração & dosagem , Citocinas/química , Liberação Controlada de Fármacos , Hirudinas/administração & dosagem , Hirudinas/química , Humanos , Hidrogéis , Camundongos , Transplante de Neoplasias , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem , Ligante Indutor de Apoptose Relacionado a TNF/química , Trombina/administração & dosagem , Trombina/química
19.
Artigo em Inglês | MEDLINE | ID: mdl-28886579

RESUMO

Recombinant Neorudin (EPR-hirudin, EH), a novel, low-bleeding anticoagulant fusion protein, has been developed as an inactive prodrug that is converted to an active metabolite, hirudin variant 2-Lys47 (HV2), at the thrombus site and is undergoing Phase I clinical trials in China. The goal of our present research was to establish a novel ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) method for simultaneously quantifying EH and HV2 in human serum. Furthermore, the method was used in clinical pharmacokinetic study after validation. The stock and dilute working solutions were dissolved in methanol/water (1/1, v/v) to avoid their adsorption. The internal standard (IS) used, had a similar structure to that of EH. The serum sample pretreatment involved protein precipitation with methanol. The volume ratio of the precipitating solvent to the serum sample was 3:1 (300µL methanol: 100µL serum sample). The chromatographic separation was performed using a 300Å C18 column using a multi-step gradient with a mobile phase consisting of acetonitrile:water containing 0.1% formic acid. The detection was carried out using an ESI source in the positive multiple reaction monitoring (MRM) mode. The within and between run precision were in the range of 3.5%-10.3% for EH and 3.3%-8.8% for HV2, and the accuracy of both EH and HV2 was between -4.6% and 2.1%. The extraction recoveries and matrix effect at three quality control (QC) levels for EH and HV2 were satisfactory. The stabilities of EH and HV2 during the storage, preparation, and analysis were confirmed, and the carryover also proved to be acceptable. This technique was efficiently used in Phase I clinical pharmacokinetic trials of EH following intravenous administration of 0.2mg/kg to healthy volunteers.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Hirudinas/sangue , Proteínas Recombinantes/sangue , Espectrometria de Massas em Tandem/métodos , Hirudinas/química , Hirudinas/farmacocinética , Humanos , Modelos Lineares , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Angew Chem Int Ed Engl ; 56(27): 7803-7807, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28504858

RESUMO

We previously reported an efficient peptide synthesis method, AJIPHASE®, that comprises repeated reactions and isolations by precipitation. This method utilizes an anchor molecule with long-chain alkyl groups as a protecting group for the C-terminus. To further improve this method, we developed a one-pot synthesis of a peptide sequence wherein the synthetic intermediates were isolated by solvent extraction instead of precipitation. A branched-chain anchor molecule was used in the new process, significantly enhancing the solubility of long peptides and the operational efficiency compared with the previous method, which employed precipitation for isolation and a straight-chain aliphatic group. Another prerequisite for this solvent-extraction-based strategy was the use of thiomalic acid and DBU for Fmoc deprotection, which facilitates the removal of byproducts, such as the fulvene adduct.


Assuntos
Técnicas de Química Sintética/métodos , Peptídeos/síntese química , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Fluorenos/química , Hirudinas/análise , Hirudinas/síntese química , Hirudinas/química , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/química , Peptídeos/química , Proteínas Recombinantes/análise , Proteínas Recombinantes/síntese química , Proteínas Recombinantes/química , Solubilidade , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...